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@ DOSs are unchaged except for /acceptor levels
° / hole doping
@ Atomic species are mobile
o vs CI,Br,l,..
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Introduction

Covalent binding
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@ Midgap states show up in the DOSs
@ Atomic species are immobile
@ H, F, OH, CHgs, etc. behave similarly to vacancies

e

See e.g., T. O. Wehling, M. |. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 80, 085428 (2008)
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Introduction

Vacancies vs adatoms
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See e.g., F. Banhart, J. Kotakoski, A. V. Krasheninnikov, ACS Nano 5, 26 (2011)
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Introduction

Vacancies vs adatoms

High-energy e~ /ion beams Low-energy beams (kinetic control)
= Random arrangement = Clustering due to preferential sticking
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Hydrogen adsorption

Hydrogen chemisorption on graphene

@ Sticking is thermally activated’-?

@ Midgap states are generated upon sticking

@ Diffusion of chemisorbed species does not occur®*
@ Preferential sticking and clustering®°-6
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Hydrogen adsorption

Sticking
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L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999) 7
X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002) ﬁ
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Hydrogen adsorption

Midgap states

Graphene
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Hydrogen adsorption

Midgap states

HTB — Zo,ij(tijaj:,aija + tjib};o.ai’o')

Electron-hole symmetry
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Hydrogen adsorption

Midgap states

H'8 = Z (tlja bjT + tjlb ai,T)

/]

If ng > ng there exist (at least) nj = ny — ng "midgap states" with vanishing
components on B sites

v

{.?. 1: } [ g}:[g} with T ngxna( > ng)

= Ta = 0 has ng — ng solutions

e
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Hydrogen adsorption

Midgap states
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Hydrogen adsorption

Midgap states

Counting the midgap states

@ Maximal set(s) of
non-adjacent sites, A

@ 1y = card{ A},
np=2na—N

@ Na=>Na= N 2Na—nNpg
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Hydrogen adsorption

Midgap states

Counting the midgap states
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Hydrogen adsorption

Midgap states

H =32 j(tyal by + tib] &) + U S mieni

If U > 0, the ground-state at half-filling has

S =|na—ng|/2=n/2

E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

...basically, we can apply Hund'’s rule to previous result



Hydrogen adsorption

Midgap states for isolated “defects”

M.M. Ugeda, I. Brihuega, F. Guinea and J.M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010) 72
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Hydrogen adsorption

Midgap states for isolated “defects”

Defect

: I
X, y,2) ~ /1 O‘ O¢

V. M. Pereira et al., Phys. Rev. Lett. 96, 036801 (2006);
Phys. Rev. B77, 115109 (2008)
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Hydrogen adsorption

Dimers




Hydrogen adsorption

Dimers
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S. Casolo, O.M. Lovvik, R. Martinazzo and G.F. Tantardini, J. Chem. Phys. 130 054704 (2009)
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Hydrogen adsorption

Dimers
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Hydrogen adsorption
Clusters

0.620 eV

p=1ug =>p =2ug= p = 3up
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Hydrogen adsorption

Clusters
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Clusters




Role of edges

@ zig-zag edge sites have
enhanced hydrogen affinity

@ geometric effects can be
investigated in small
graphenes




Hydrogen adsorption

Role of edges
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Hydrogen adsorption

Role of edges
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Hydrogen adsorption

Role of edges: graphenic vs edge sites
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Hydrogen adsorption

Role of edges: graphenic vs edge sites
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Bandgap engineering

Outline

Q Bandgap engineering
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Bandgap engineering

Band-gap opening

@ Electron confinement: nanoribbons, (hanotubes),etc.
@ Symmetry breaking: epitaxial growth, deposition, etc.
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Bandgap engineering

Band-gap opening

@ Electron confinement: nanoribbons, (hanotubes),etc.
@ Symmetry breaking: epitaxial growth, deposition, etc.
@ Symmetry preserving: “supergraphenes”
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Bandgap engineering

Band-gap opening

@ Electron confinement: nanoribbons, (hanotubes),etc.
@ Symmetry breaking: epitaxial growth, deposition, etc.
@ Symmetry preserving: “supergraphenes”

L
Atomic-scale defects on graphene



Bandgap engineering

e-h symmetry

HTB — Zo,ij(tijaj:,aija + tjib};o.ai’o')

Electron-hole symmetry
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Bandgap engineering

Spatial symmetry
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Bandgap engineering

Spatial symmetry
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Bandgap engineering

Spatial symmetry
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Bandgap engineering

Spatial and e-h symmetry

" - e-h symmetry holds within each kind of symmetry
T — 1 species (A, E, ..)
+ 1T - For any bipartite lattice at half-filling, if the number
+ 1 + of E irreps is odd at a special point, there is a
T B degeneracy at the Fermi level, i.e. Egap = 0
n even even even or odd
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Bandgap engineering

A simple recipe

@ Consider nxn graphene superlattices (i.e. G = Dgp):
degeneracy is expected at I', K

@ Introduce pz vacancies while preserving point symmetry

@ Check whether it is possible to turn the number of E irreps
to be even both at I and at K
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Bandgap engineering

Counting the number of E irreps
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Bandgap engineering

An example

(14,0)-honeycomb
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Bandgap engineering

Band-gap opening..

Tight-binding DFT
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R. Martinazzo, S. Casolo and G.F. Tantardini, Phys. Rev. B, 81 245420 (2010) i&
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Bandgap engineering

..and Dirac cones

..not only: as degeneracy may still occur at € # ¢
new Dirac points are expected

graphene (4x4) (4,0)~honeycomb
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Bandgap engineering

..and Dirac cones

..not only: as degeneracy may still occur at € # ¢
new Dirac points are expected
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Bandgap engineering

Antidot superlattices

...the same holds for honeycomb antidots
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Bandgap engineering

Antidot superlattices

...the same holds for honeycomb antidots

M. D. Fishbein and M. Drndic, Appl. Phys. Lett. 93, J. Bai et al. Nature Nantotech. 5, 190 (2010)
113107 (2008)
T. Shen et al. Appl. Phys. Lett. 93, 122102 (2008)
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Summary

Summary

@ Covalently bound species generate midgap species upon
bond formation

@ Midgap states affect chemical reactivity

@ Thermodynamically and kinetically favoured configurations
minimize sublattice imbalance

@ Symmetry breaking is not necessary to open a gap
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