The effect of atomic-scale defects and dopants on Graphene electronic structure

Rocco Martinazzo

Dip. di Chimica-Fisica e Elettrochimica Universita' degli Studi di Milano, Milan, Italy

GSNL, Assergi (L'Aquila), May 15th - 18rd 2011

- Introduction
- 2 Hydrogen adsorption
- 3 Bandgap engineering

- Introduction
- 2 Hydrogen adsorption
- Bandgap engineering

- Introduction
- 2 Hydrogen adsorption
- Bandgap engineering

- Introduction
- 2 Hydrogen adsorption
- Bandgap engineering

Ionic binding

- DOSs are unchaged except for donor/acceptor levels
- electron / hole doping
- Atomic species are mobile
- Li, Na, K, Cs.. vs Cl, Br, I,...

Covalent binding

- Midgap states show up in the DOSs
- Atomic species are immobile
- H, F, OH, CH₃, etc. behave similarly to vacancies

Vacancies vs adatoms

Vacancies vs adatoms

High-energy e⁻/ion beams ⇒ Random arrangement

Low-energy beams (kinetic control) ⇒ Clustering due to preferential sticking

- 1 Introduction
- 2 Hydrogen adsorption
- 3 Bandgap engineering

Hydrogen chemisorption on graphene

- Sticking is thermally activated^{1,2}
- Midgap states are generated upon sticking
- Diffusion of chemisorbed species does not occur^{3,4}
- Preferential sticking and clustering^{3,5,6}
- [1] L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999)
- [2] X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
- [3] L. Hornekaer et al., Phys. Rev. Lett. 97, 186102 (2006)
- [4] J. C. Meyer et al., Nature 454, 319 (2008)
- [5] A. Andree et al., Chem. Phys. Lett. 425, 99 (2006)
- [6] L. Hornekaer et al., Chem. Phys. Lett. 446, 237 (2007)

Sticking

L. Jeloaica and V. Sidis, *Chem. Phys. Lett.* **300**, 157 (1999) X. Sha and B. Jackson, *Surf. Sci.* **496**, 318 (2002)

..patterned spin-density

$$H^{TB} = \sum_{\sigma,ij} (t_{ij} a^{\dagger}_{i,\sigma} b_{j,\sigma} + t_{ji} b^{\dagger}_{j,\sigma} a_{i,\sigma})$$

Electron-hole symmetry

$$b_i \rightarrow -b_i \Longrightarrow \mathbf{h} \rightarrow -\mathbf{h}$$

if ϵ_i is eigenvalue and

$$c_i^\dagger = \sum_i \alpha_i a_i^\dagger + \sum_j \beta_j b_j^\dagger$$
 eigenvector

 $-\epsilon_i$ is also eigenvalue and

$$c_i^{'\dagger} = \sum_i \alpha_i a_i^\dagger - \sum_j \beta_j b_i^\dagger$$
 is eigenvector

$$H^{TB} = \sum_{ au, ij} (t_{ij} a^{\dagger}_{i, au} b_{j, au} + t_{ji} b^{\dagger}_{j, au} a_{i, au})$$

Theorem

If $n_A > n_B$ there exist (at least) $n_I = n_A - n_B$ "midgap states" with vanishing components on B sites

Proof.

$$\begin{bmatrix} \mathbf{0} & \mathbf{T}^{\dagger} \\ \mathbf{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \text{ with } \mathbf{T} \ n_{B} \times n_{A} (> n_{B})$$

$$\Longrightarrow \mathbf{T} \alpha = \mathbf{0} \text{ has } n_{A} - n_{B} \text{ solutions}$$

Counting the midgap states

- Maximal set(s) of non-adjacent sites, A
- $\eta_{\mathcal{A}} = \operatorname{card}\{\mathcal{A}\},$ $n_{l} = 2\eta_{\mathcal{A}} - N$
- $\eta_A \geq n_A \Rightarrow n_I \geq n_A n_B$

Counting the midgap states

- Maximal set(s) of non-adjacent sites, A
- $\eta_{\mathcal{A}} = \operatorname{card}\{\mathcal{A}\},$ $n_{l} = 2\eta_{\mathcal{A}} - N$
- $\eta_A \geq n_A \Rightarrow n_I \geq n_A n_B$

$$H^{Hb} = \sum_{ au,ij} (t_{ij} \mathbf{a}_{i, au}^{\dagger} b_{j, au} + t_{ji} b_{j, au}^{\dagger} \mathbf{a}_{i, au}) + U \sum_{i} n_{i, au} n_{i,- au}$$

Theorem

If U > 0, the ground-state at half-filling has

$$S = |n_A - n_B|/2 = n_I/2$$

Proof.

E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

...basically, we can apply Hund's rule to previous result

Midgap states for isolated "defects"

M.M. Ugeda, I. Brihuega, F. Guinea and J.M. Gomez-Rodriguez, *Phys. Rev. Lett.* 104, 096804 (2010)

Midgap states for isolated "defects"

 $\psi(x, y, z) \sim 1/r$

V. M. Pereira et al., Phys. Rev. Lett. 96, 036801 (2006); Phys. Rev. B 77, 115109 (2008)

Dimers

Dimers

S. Casolo, O.M. Lovvik, R. Martinazzo and G.F. Tantardini, J. Chem. Phys. 130 054704 (2009)

Dimers

[1] L. Hornekaer, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. Laegsgaard, B. Hammer and F. Besenbacher. *Phys. Rev. Lett.* **96** 156104 (2006)

[2] A. Andree, M. Le Lay, T. Zecho and J. Kupper, Chem. Phys. Lett. 425 99 (2006)

Clusters

$$\mu = 1\mu_B \Rightarrow \mu = 2\mu_B \Rightarrow \mu = 3\mu_B$$

Clusters

Clusters

Role of edges

- zig-zag edge sites have enhanced hydrogen affinity
- geometric effects can be investigated in small graphenes

Role of edges

imbalanced 'PAHs'

Role of edges

imbalanced 'PAHs'

balanced PAHs

Role of edges: graphenic vs edge sites

Role of edges: graphenic vs edge sites

- Introduction
- 2 Hydrogen adsorption
- Bandgap engineering

Band-gap opening

- Electron confinement: nanoribbons, (nanotubes), etc.
- Symmetry breaking: epitaxial growth, deposition, etc.
- Symmetry preserving: "supergraphenes"

Band-gap opening

- Electron confinement: nanoribbons, (nanotubes), etc.
- Symmetry breaking: epitaxial growth, deposition, etc.
- Symmetry preserving: "supergraphenes"

Band-gap opening

- Electron confinement: nanoribbons, (nanotubes), etc.
- Symmetry breaking: epitaxial growth, deposition, etc.
- Symmetry preserving: "supergraphenes"

e-h symmetry

$$H^{TB} = \sum_{\sigma,ij} (t_{ij} a^{\dagger}_{i,\sigma} b_{j,\sigma} + t_{ji} b^{\dagger}_{j,\sigma} a_{i,\sigma})$$

Electron-hole symmetry

$$b_i \rightarrow -b_i \Longrightarrow \mathbf{h} \rightarrow -\mathbf{h}$$

if ϵ_i is eigenvalue and

$$c_i^\dagger = \sum_i \alpha_i a_i^\dagger + \sum_j \beta_j b_j^\dagger$$
 eigenvector \Downarrow

 $-\epsilon_i$ is also eigenvalue and

$$c_i^{'\dagger} = \sum_i \alpha_i a_i^\dagger - \sum_j \beta_j b_i^\dagger$$
 is eigenvector

$$\begin{cases} n_* \\ n_A + n_B - 2n_* \\ n_* \end{cases}$$

Spatial symmetry

r-space

k-space

$$G(\mathbf{k}) = \{ g \in G_0 | g\mathbf{k} = \mathbf{k} + \mathbf{G} \}$$

$$\Rightarrow \frac{G(\mathbf{K})}{2} = \frac{D_{3h}}{2}$$

Spatial symmetry

r-space

k-space

$$G(\mathbf{k}) = \{ g \in G_0 | g\mathbf{k} = \mathbf{k} + \mathbf{G} \}$$

$$\Rightarrow G(\mathbf{K}) = D_{3h}$$

Spatial symmetry

$$egin{aligned} |A_{\mathbf{k}}
angle &= rac{1}{\sqrt{N_{BK}}} \sum_{\mathbf{R} \in \mathcal{B}K} e^{-i\mathbf{k}\mathbf{R}} \, |A_{\mathbf{R}}
angle \ |B_{\mathbf{k}}
angle &= rac{1}{\sqrt{N_{BK}}} \sum_{\mathbf{R} \in \mathcal{B}K} e^{-i\mathbf{k}\mathbf{R}} \, |B_{\mathbf{R}}
angle \ &\langle r|A_{\mathbf{R}}
angle &= \phi_{\mathcal{P}_{\mathcal{F}}}(\mathbf{r} - \mathbf{R}) \end{aligned}$$

For $\mathbf{k} = \mathbf{K}$ (or \mathbf{K}')

- $\{|A_{\mathbf{k}}\rangle, |B_{\mathbf{k}}\rangle\}$ span the E'' irrep of D_{3h}
- Degeneracy is lifted at first order (no i symmetry in D_{3h})

Spatial and *e-h* symmetry

Lemma

e-h symmetry holds within each kind of symmetry species (A, E, ..)

Theorem

For any bipartite lattice at half-filling, if the number of \boldsymbol{E} irreps is odd at a special point, there is a degeneracy at the Fermi level, i.e. $\boldsymbol{E}_{gap} = \boldsymbol{0}$

A simple recipe

- Consider nxn graphene superlattices (i.e. G = D_{6h}): degeneracy is expected at Γ, K
- Introduce p_Z vacancies while preserving point symmetry
- Check whether it is possible to turn the number of E irreps to be even both at Γ and at K

Counting the number of *E* irreps

$$n = 4$$

Γ	Α	E
Ō ₃	2 <i>m</i> ²	2 <i>m</i> ²
13	$2(3m^2+2m+1)$	$2(3m^2+2m)$
$\bar{2}_3$	$2(3m^2+4m+2)$	$2(3m^2+4m+1)$
Kn	Α	F
13/1		_
- Ō ₃	2 <i>m</i> ²	2 <i>m</i> ²
	$ 2m^{2} $ $ 2m(3m+2) $ $ 2(3m^{2}+4m+1) $	$2m^{2}$ $2m(3m+2)+1$ $2(3m^{2}+4m+1)+1$

 \Rightarrow $n = 3m + 1, 3m + 2, m \in \mathbb{N}$

An example

(14,0)-honeycomb

Band-gap opening..

R. Martinazzo, S. Casolo and G.F. Tantardini, Phys. Rev. B, 81 245420 (2010)

..and Dirac cones

..not only: as degeneracy may still occur at $\epsilon \neq \epsilon_F$ new Dirac points are expected

..and Dirac cones

..not only: as degeneracy may still occur at $\epsilon \neq \epsilon_F$ new Dirac points are expected

Antidot superlattices

...the same holds for honeycomb antidots

Antidot superlattices

...the same holds for honeycomb antidots

M. D. Fishbein and M. Drndic, *Appl. Phys. Lett.* **93**, 113107 (2008)

T. Shen et al. Appl. Phys. Lett. 93, 122102 (2008)

J. Bai et al. Nature Nantotech. 5, 190 (2010)

Summary

- Covalently bound species generate midgap species upon bond formation
- Midgap states affect chemical reactivity
- Thermodynamically and kinetically favoured configurations minimize sublattice imbalance
- Symmetry breaking is not necessary to open a gap

Acknowledgements

University of Milan

Gian Franco Tantardini

Simone Casolo

Matteo Bonfanti

Chemical Dynamics Theory Group http://users.unimi.it/cdtg

+-X:

I.S.T.M.

C.I.L.E.A. Supercomputing Center Notur

Acknowledgements

Thank you for your attention!

